Acute Stroke Care

- Annually, about 795,000 people have a new or recurrent stroke
 - Approximately 610,000 of these strokes are first attacks and about 185,000 are recurrent attacks
- On average, in the United States, every 40 seconds someone has a stroke
- Stroke is the fourth leading cause of death in the United States, ranking behind heart disease, cancer and lower respiratory tract diseases.
- From 1995 to 2005, the stroke death rate fell 29.7%, and the actual number of stroke deaths declined 13.5%
Acute Stroke Care

Percentage of People Who Were Ever Told They Had a Stroke, 2008

Age-adjusted to the 2006 U.S. standard population.
Acute Stroke Care

Age-adjusted Average (Annual) Deaths per 100,000

Reference: CDC
Acute Stroke Care

- Before age 85, men are more likely than women to have a stroke; after age 85, the trend reverses
- Each year, about 55,000 more women than men have a stroke
- 87% of all strokes are ischemic. 10% are intracerebral hemorrhages, and 3% are subarachnoid hemorrhage strokes
Acute Stroke Care

Stroke: the primary cause of long-term disability in the United States

Disabilities in patients* 6 months after acute ischemic stroke

- Hemiparesis: 50%
- Unable to walk without assistance: 30%
- Dependent in activities of daily living: 26%
- Aphasia: 19%
- Depressive symptoms: 35%
- Institutionalized in a nursing home: 26%

Many patients see the disabilities associated with severe stroke as worse than death.

*Among ischemic stroke survivors at least 65 years of age.

Acute Stroke Care

The cost of stroke

The direct and indirect costs of stroke in 2008 in the United States were estimated at $65.5 billion

Direct costs $43.7 billion

Hospital care $18.9 billion
Nursing home care $15.7 billion
Home healthcare $4.2 billion
Physicians, other professionals $3.6 billion
Drugs, medical durables $1.3 billion

Indirect costs $21.8 billion

Lost productivity, mortality $15.1 billion
Lost productivity, morbidity $6.7 billion

*Estimated for 2008.
Acute Stroke Care

- Recombinant Tissue Plasminogen Activator (t-PA) was approved by the FDA in 1996 based on the NINDS trial for use in patients with acute ischemic stroke within 3 hours of onset of symptoms.
- This remains the mainstay in the treatment of ischemic stroke patients.
Acute Stroke Care

- Characteristics of Patients With Ischemic Stroke Who Could Be Treated With r-tPA
 - Diagnosis of ischemic stroke causing measurable neurological deficit
 - The neurological signs should not be clearing spontaneously.
 - The neurological signs should not be minor and isolated.
 - Caution should be exercised in treating a patient with major deficits
Acute Ischemic Stroke

Characteristics of Patients With Ischemic Stroke Who Could Be Treated With rtPA

- The symptoms of stroke should not be suggestive of subarachnoid hemorrhage.
- Onset of symptoms 3 hours before beginning treatment
- No head trauma or prior stroke in previous 3 months
- No myocardial infarction in the previous 3 months
Acute Stroke Care

Characteristics of Patients With Ischemic Stroke Who Could Be Treated With rtPA

- No gastrointestinal or urinary tract hemorrhage in previous 21 days
- No major surgery in the previous 14 days
- No arterial puncture at a noncompressible site in the previous 7 days
- No history of previous intracranial hemorrhage
- Blood pressure not elevated (systolic 185 mm Hg and diastolic 110 mm Hg)
Acute Stroke Care

Characteristics of Patients With Ischemic Stroke Who Could Be Treated With rtPA

- No evidence of active bleeding or acute trauma (fracture) on examination
- Not taking an oral anticoagulant or, if anticoagulant being taken, INR \(\leq 1.7 \)
- If receiving heparin in previous 48 hours, aPTT must be in normal range.
- Platelet count 100,000 mm\(^3\)
- Blood glucose concentration 50 mg/dL (2.7 mmol/L)
Acute Stroke Care

Characteristics of Patients With Ischemic Stroke Who Could Be Treated With rtPA

- No seizure with postictal residual neurological impairments
- CT does not show a multilobar infarction (hypodensity 1/3 cerebral hemisphere).
- The patient or family members understand the potential risks and benefits from treatment
Numerous studies establish the efficacy and safety profile\(^1\text{-}^4\)

<table>
<thead>
<tr>
<th>Clinical study</th>
<th>N</th>
<th>Follow-up period</th>
<th>Clinical outcomes (% of patients)</th>
<th>SICH</th>
</tr>
</thead>
</table>
| NINDS\(^1\) | Part 1: 291*
Part 2: 333*
(144 patients) | 90 days
(Part 2 data) | Favorable outcome\(^1\):
Death:
- t-PA: 39%
- Placebo: 26%
(6.4% within 36 hours, Parts 1+2) | |
| STARS\(^2\) | 389 | 30 days\(^3\) | Favorable outcome\(^2\):
Death:
- t-PA: 35%
- Placebo: 32%
(3.3% within 3 days) | |
| CASES\(^3\) | 1135 | 90 days | Favorable outcome\(^3\):
Death:
- t-PA: 32%
- Placebo: 22%
(4.6%) | |
| SITS-MOST\(^4\) | 6483 | 90 days\(^4\) | Favorable outcome\(^4\):
Death:
- t-PA: 39%
- Placebo: 11%
(1.7% within 24 hours\(^5\)) | |

\(^*\text{t-PA}=144; \text{placebo}=147.\)
\(^1\text{t-PA}=168; \text{placebo}=165.\)
\(^2\text{Based on a Modified Rankin Scale score of 0 or 1 (minimal or no disability).}\)
\(^3\text{Data at 30 days available for 382 patients.}\)
\(^4\text{Data at 90 days available for 6136 patients.}\)
\(^5\text{SICH in SITS-MOST is defined as local or remote parenchymal hemorrhage type 2 on imaging scan combined with a neurologic deterioration of 4 points or more on the NIHSS.}\)

\(\text{In the NINDS pivotal study, approximately half of the patients who experienced SICH had nonfatal outcomes at 36 hours}\(^1\)\)

\(- 55\% (11 of 20) \text{ of patients treated with Activase (t-PA) and 50\% (1 of 2) of patients given a placebo}\)
Acute Stroke Care

- Thrombolysis with Alteplase 3 to 4.5 Hours after Acute Ischemic Stroke – ECASS III Trial
 - Done in 2008 in Europe
 - AHA/ASA Guidelines changed to extend window for Acute Stroke
- Additional Contraindications:
 - Age greater than 80 years
 - Oral Anticoagulants
 - History of prior stroke and Diabetes

Acute Stroke Care

○ Case 1:
○ 83 yr. old man with h/o HTN, DM, CAD, MI who had lunch at 1:00 pm with his wife. At 1:15 she went to ask him a question about the recipe that she was preparing for dinner and found him to be unresponsive.
○ Patient taken to OSH where ED physician noted left sided weakness and dysarthria
Acute Stroke Care

- CT head was negative.
- Risks and benefits discussed with family and they wished to proceed with t-PA.
- IV t-PA was initiated at 3:37 pm.
Acute Stroke Care
24 hours post t-PA, patient had minimal residual left hemiparesis.
Acute Stroke Care

- 80 yr. old woman with history of hypertension who was last seen normal at 5:00 am by son. Daughter noticed difficulty with speech at 7:30 am and taken to local ER where she arrived at 8:30 am.
- Initial CT head was negative
Acute Stroke Care

What should be the next step in the management of this patient?

- A. Give ASA
- B. Give IV t-PA
- C. Consider IA t-PA
- D. Discharge home
Acute Stroke Care

- Patient was administered IV t-PA at 9:15 am.
- Patient at 12:00 pm was able to talk in sentences though still was still non fluent.
- Patient was found to have new onset Atrial fibrillation with rapid ventricular response.
Acute Stroke Care
Acute Stroke Care
Acute Stroke Care

- Case 3:
 - 67 yr. old woman with history of hypertension was in the car with her daughter when at approximately at 2:15 pm, the daughter noticed that patient had slurred speech and left sided weakness.
 - She kept on driving and came to EMMC ER at 3:00 pm where code stroke was initiated.
Acute Stroke Care

- Blood pressure was 186/104.
- Initial CT head showed no evidence of abnormalities.
- What should be the next step in the management of this patient?
Acute Stroke Care
Acute Stroke Care

○ Patient was given Labetolol 10 mg intravenously and repeat blood pressure measurement was 160/90.
○ What should be the next step?
Acute Stroke Care

- IV t-PA was initiated and 2 hours post infusion, patient had complete resolution of her symptoms

- Her imaging is as follows:
Acute Stroke Care
Acute Stroke Care
Acute Stroke Care
Acute Stroke Care

- Secondary Stroke Prevention:
- Risk factor modification:
 - Hypertension: Remains the most common modifiable risk factor. Multiple trials including HOPE, PROGRESS etc.
 - An absolute target BP level and reduction are uncertain and should be individualized, but benefit has been associated with an average reduction of approximately 10/5 mmHg, and normal BP levels of < 120/80.
Acute Stroke Care

- A trial called the Secondary Prevention of Small Subcortical Strokes (SPS3) is underway to try and establish an ideal target for reducing BP to prevent secondary strokes.

- Patients are divided into 2 arms
 - BP reduction goal of less than 130 mmHg or
 - Between 130-149 mmHg
 - Study to end in April 2012.
Acute Stroke Care

- This study was also done to see if combination of Aspirin (ASA) and Plavix was efficacious in preventing subcortical strokes.

- This arm was terminated early due to 6.5% of patients taking both drugs experienced bleeding events by mid-June. 5.5% suffered non CNS hemorrhage compared to 3.3% taking ASA alone.
Acute Stroke Care

- The mortality was also higher in the combination arm at 5.8% versus the aspirin-placebo arm at 4.1%
- Prior 2 trials for combination therapy including MATCH (2004) and CHARISMA (2006) trial showed no benefit to dual therapy in preventing atherosclerotic events.

Acute Stroke Care

- On the flip side, a study where combination of ASA and Plavix was superior is the “Stenting versus Aggressive Medical Therapy for Intracranial Arterial Stenosis (SAMMPRIS)”.

- In this study, patients with recent TIA or stroke attributed to stenosis of 70-99% of the diameter of a major intracranial artery were randomized to either stenting using the Wingspan system or to aggressive medical management.
Acute Stroke Care

- Medical Management consisted of
 - ASA 325 mg daily
 - Plavix 75 mg for 90 days after enrollment
 - Management of primary risk factors including HTN, Hyperlipidemia; and management of secondary risk factors including diabetes, elevated HDL, smoking, excess weight, and insufficient exercise
Acute Stroke Care

- SBP target was < 140 mmHg or < 130 for patients with Diabetes.
- LDL was targeted for < 70
- Enrollment was stopped after 451 patients were randomized because of the 30 day rate of stroke or death was 14.7% in the stenting group with non fatal stroke accounting for 12.5% and fatal stroke of 2.2%
Acute Stroke Care

- 30 day stroke or death rate was 5.8% in medical management arm (Nonfatal stroke 5.3% and non stroke related death 0.4%).
- Follow up is still ongoing in the study
Acute Stroke Care

- Atrial Fibrillation and Stroke
 - Exciting time due to multiple new agents showing good results
 - Dabigatran (Pradaxa) a direct thrombin inhibitor, has been approved and is used for patients with non-valvular Atrial fibrillation for primary and secondary stroke prevention based on the results of the RELY study.
 - Word of caution- start 14 days after stroke to prevent hemorrhagic conversion.
Acute Stroke Care

○ Newer agents like Apixaban which is a direct factor Xa inhibitor showed promising results based on the ARISTOTLE study for preventing stroke or systemic embolism. (await FDA approval)

Thank you